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Final Project Report: AFOSR Grant F/9620-97-0135
Computation Tools for Analysis of Reduced-Order Models for
Aeroengine Instabilities

J. Guckenheimer?!

1 Objectives

The objectives of this project were to develop improved algorithms for ana-
lyzing the dynamics of nonlinear systems arising in the study of aeroengines.
The emphasis was upon algorithms to compute periodic orbits. A close work-
ing relationship was established with United Technologies Research Corpo-
ration regarding aerodynamic, aeroelastic and thermoacoustic instabilities of
engine components.

2 Accomplishments/New Findings

This section lists the accomplishments achieved during this project.

2.1 Matlab toolboxes for interfacing computer pack-
ages

Numerical tools plays an important role in analyzing dynamical systems.
There are many numerical packages currently available for such problems as
exploration of phase portraits, initial value problems, boundary value prob-
lems and bifurcation analysis. Although these packages can provide substan-
tial information about the dynamical systems, they do not interoperate with
one another easily. Each packages has its own data type, model declaration,
input/output structure, and frequently one has to duplicate information on
the dynamical system in question separately to run other packages.

On the other hand, recent success of Matlab clearly exhibits the pro-
ductivity and flexibility of interactive numerical environments. Due to the
improvements in computer hardware, the overhead of an interpreted envi-
ronment is less important, and one can translate Matlab script into a native

1Cornell University, Department of Mathematics and Cornell Theory Center, Ithaca,
NY 14853 ’




language (such as C) at any stage of development. Matlab is extensible so
that users can.convert their own code written in conventional languages such
as C or Fortran as a mex-file, which is treated exactly the same as Matlab
built-in procedures.

The first goal of this effort is the integration of numerical packages for
nonlinear problems to provide a transparent environment for the study of
dynamical systems. Also, users should be able to add their own programs
easily, without sacrificing the integrity of the environment. The second goal
is the use of Matlab as an interactive command language to drive numerical
packages and provide graphics and elementary numerical utilities. Appen-
dices 1 and 2 give technical guidelines for how to build an interface and an
example interface for the computer package AUTO [1]

2.2 Computation of periodic orbits with automatic dif-
ferentiation

The dynamics of fluids are often studied through the reduction of partial dif-
ferential equations to systems with only a few degrees of freedom. Analysis
of these low dimensional vector fields remains difficult in many examples.
The simplest dynamical behaviors are equilibria representing steady flow
and periodic orbits. The solutions of initial value problems, computed via
numerical integration, are used to find stable periodic orbits of vector fields.
Numerical integration algorithms are usually reliable and their output is usu-
ally consistent with other means of analyzing the properties of vector fields.
However, this is not always the case, especially in systems with multiple time
scales. To deal with these circumstances, a new set of boundary value solvers
that appear to give significantly improved methods for computing “difficult”
periodic orbits were constructed. These methods are based upon Taylor se-
ries computations and utilize a technique called “automatic differentiation.”
They have been applied to problems with multiple time scales, including
the classical example of “canards.” The latest results in these methods are
described in the manuscript “Computing Periodic Orbits and their Bifurca-
tions with Automatic Differentiation” under review for the SIAM Journal
of Scientific Computing. Example code for the canard problem is included
as Appendix 3. This code depends upon a slightly modified version of the
computer package ADOL-C [2] that is available via ftp at

ftp: //cam.cornell. edu/pub/gucken/Canard_demo.tar.gz.




Research continues at further improvement of these algorithms.

2.3 Computation of Floquet multipliers in collocation-
and finite difference codes

Sometimes, one needs to compute the eigenvalues of a product of matrices,
e.g., when computing the stability of periodic solutions in multiple shooting
or Gauss-Legendre collocation codes. If the monodromy matrix is built ex-
plicitly — i.e., not as a product of matrices — accuracy is lost if some of the
Floquet multipliers (= the stability-determining eigenvalues) are extremely
large or small. Such a strategy is used by most conventional multiple-shooting
or collocation codes and was also used in AUTO86. The more refined algo-
rithm used in AUTO94 and AUTO97 does not completely cure the problem.
The solution is the use of the periodic Schur decomposition (developed by
Bojanczyk, Golub and Van Dooren) and the corresponding periodic QR al-
gorithm. Three years ago, Lust developed a code which implements a variant
of this algorithm. This periodic Schur decomposition — when well imple-
mented — allows to compute the Floquet multipliers with the full accuracy
of the time discretization.

This code has been enhanced to compute eigenvalues outside the reach of
double precision numbers (i.e., eigenvalues smaller than 1073% or larger than
10%% on a IEEE-compliant computer.) This is done without using extended
precision. Instead, the Floquet multiplier is represented on a logarithmic
scale, somewhat similar to the way Lapack represents the determinant of a
matrix. In exact arithmetic, the algorithm used to compute the eigenvalues of
the product of matrices is equivalent to the QR algorithm for the computation
of eigenvalues. However, in double precision arithmetic, some robustness is
lost compared to the QR algorithm for a single matrix. Therefore we have
also experimented with several special shift strategies. This has made the
code more robust. '

The new code was tested by computing the stability of periodic solutions
near a saddle-initiated canard solution of a multiple time-scale system of two
coupled oscillators. In this system, very large and extremely small Floquet
multipliers have been observed — for some parameter values, the Gauss-
Legendre collocation method based on seventh degree polynomials could not
successfully reproduce the smallest Floquet multipliers.




2.4 Bifurcation analysis of spiral waves

There is a great interest in the study of pattern formation in different fields.
Pattern formation can influence the performance of catalyst surfaces in chem-
ical reactions, and spiral waves are one possible pattern. Spiral waves also
play a role in sudden cardiac death. It is important to understand which pat-
terns can arise and how their stability evolves as parameters in the system
are changed. During his Ph.D., Lust developed tools to compute periodic so-
lutions of large systems with low-dimensional dynamics and to analyze their
stability. This method is known as the Newton-Picard method. The goal
of this research was to combine these algorithms with a simulation code for
spiral waves or some other pattern formation phenomenon and to gain more
insight in the relations between patterns and bifurcations of steady-states
and limit cycles.

A FitzHugh-Nagumo model with reaction terms modeling the CO oxida-
tion on a platinum catalyst was used as a test example. The latter system
is known to have spiral wave solutions loosing stability to either meandering
spiral waves or to a state known as “chemical turbulence”. The first bifur-
cation is associated with a Hopf bifurcation, the latter is probably related to
a bifurcation involving the continuous spectrum (or its approximation when
the spiral wave is placed in a finite box.) A 1D “caricature” model due to
Knobloch and Tobias and others, modeling the behavior of target patterns
(whose bifurcations are the same as for spiral waves) was implemented first.
The Newton-Picard method should facilitate very high resolution computa-
tions of this model to verify computations already done in the group of Y.
Kevrekidis (Princeton.)

In a disc-shaped domain, spiral waves can be studied as steady-states in a
rotating coordinate frame and there is no need to compute periodic solutions
except to study branches of meandering spirals. However, when the rota-
tional symmetry is broken (square domain, anisotropic diffusion, etc.) the
spiral wave must be studied as a periodic solution. In chemical engineering,
there is an interest in the study of spiral waves in media with anisotropic dif-
fusion or patterns of catalyst. These applications justified the development
of a code for periodic solutions already for the first experiments.
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4 Interactions/Transitions

Kurt Lust was jointly supported by this grant and UTRC during the period
August 1998 - August 1999. During July and August, 1998, he was at UTRC
as an industrial postdoc from the IMA in Minneapolis, an appointment that
was arranged in anticipation of his work for this grant. Here is his report on
the work that he did in collaboration with UTRC:

4.1 A Matlab toolbox for POD analysis

During July and August 1998, before coming to Cornell, I worked at UTRC
(as an IMA industrial postdoc) on the development of a low-dimensional
model for fluid flow in a diffuser based on a Galerkin projection on POD
modes. The model was based on the 2D Navier-Stokes equations for com-
pressible flow. Performing a Galerkin projection for these equations is not




straightforward and does not result in a model which is cheap to evaluate.
Therefore, a slightly different approach was chosen. Instead of working with
the original PDE and computing POD modes from functions describing the
solution at a certain time, we started from the space-discretized equations.
They define a very high-dimensional dynamical system du/dt = f(u). The
CFD code I used to generate the data uses the finite volume technique on a
multiblock grid for the space discretization. I computed POD modes from
a set of vectors (representing the discretized flowfields) and projected the
discretized PDE on these vectors. This low-dimensional model was imple-
mented on top of the f(u)-routine from the CFD code. This does not deliver
a cheap model, but it is much easier to code than a Galerkin projection in a
function space. Note that the latter is not true if one starts from a simula-
tion code based on a Galerkin projection (e.g., a finite element code.) Then
all integrals needed for the Galerkin projection on POD modes are already
computed in the code, and one can usually easily modify the code to obtain
a model based on POD modes. This is the way in which POD-based models
for the incompressible Navier-Stokes equations are build traditionally.

We interfaced the FORTRAN77 CFD code with Matlab and developed an
object-oriented toolbox to work with simulation results, construct the POD
modes and work with the POD model. Objects were developed that make
abstraction of a multiblock grid, the grid generator, the CFD code, a flow
field, sets of flow fields or trajectories, symmetries of the geometry, POD
modes and the POD-based model. By using different objects for different
concepts, the toolbox can be easily adapted to work with a different kind of
grid, a different code (not necessarily a CFD code) or different techniques to
construct the POD basis. By using function overloading, the library becomes
miuch easier to use. E.g., only one command is used to plot grids, flow fields,
POD modes or sets of flow fields.

The goal was to obtain a model which allowed to study “bifurcations” in
the flow as the angle of the diffuser is varied. In fact, this was an additional
motivation to use a projection of the discretized equations. The POD theory
is about the study of the behavior of the PDE on a fixed domain. It does not
really support changing parameters in the system, and changing the geome- -
try causes even more trouble. The domain should be transformed to a fixed
shape such that the parameters describing the domain show up as additional
parameters in the equation. This is easy when we use the space-discretized
equation: although the geometry changes, the grid structure (i.e., the num-
ber of grid cells in each direction in each grid block and the connections
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between grid blocks) does not change, so we automatically have some sort of
transformation to a standard domain.

Although the Matlab routines do allow to build such a model, we could
not successfully construct a low-dimensional model. The toolbox allowed us
to also analyze the cause of failure in more detail. There were many reasons
for the failure.

e First of all, the 2D Navier-Stokes equations do not have bifurcations in
the area of interest. The evolutions of the large-scale structures show
bifurcations, but the Navier-Stokes equations have a chaotic attractor
in that domain due to the turbulence. One should not expect that a
projection on POD modes which do represent the large-scale structures
well but cannot represent the richness of the dynamics at fine scales
will automatically model the effect of those fine scales on the dynamics.
There is not enough energy absorption in such a model, leading to blow-
up of the solution.

e The quantity and quality of the data was too low. Building a POD
model requires a lot of data. Building a model with parameters requires
even more data. The solutions of the CFD code were not sufficiently
converged at every time step. Moreover, even for a fixed parameter,
there was not sufficient data to capture the faster dynamics. Hence the
modes were not able to reconstruct the right-hand side f(u) accurately
enough. Thousands of data samples are needed at a single value of
the parameter to obtain this goal. I suspect that a dense sampling
in the parameter direction would be needed too to build a reliable
model which allows to vary the parameter. This was infeasible on the
computer infrastructure available at UTRC.

4.2 System identification in combustion systems

Ghoniem et al. derived a first-order linear model for the transfer function
of velocity fluctuations to flame surface area fluctuations for combustion of
a lean premixed fuel-air mixture in a tube based on an analytical approxi-
mations for the solution of the Navier-Stokes equations extended with the
G-equation for the modeling of the combustion. Such a model can then be
used as one building block for a low-dimensional model for acoustic instabil-
ities in a combustor. It is conjectured that there is a feedback mechanism
from the acoustics (pressure fluctuations and hence velocity fluctuations) to
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the flame surface area which is responsible for acoustic instabilities in a lean
premixed flow combustor. The goal was to check whether a similar relaticin-
ship can be derived for a more realistic combustor. Therefore we studied
simulation results obtained with a 2D axisymmetric model. Various sys-
tem identification techniques were used to construct linear models for the
observed transfer functions.

The transfer functions obtained from the CFD results did not indicate
the existence of a simple linear first-order relationship between velocity- and
flame surface area fluctuations. They suggested a model with delay and
second- or fourth-order dynamics.

4.3 RPM as a convergence accelerator in CFD codes
for compressible flow

The Recursive Projection Method (RPM) was derived by Shroff and Keller [4]
as a way to accelerate the convergence of fixed-point (or Picard) iterations
schemes and to stabilize such iterations in case of non-convergence. The
subspace of divergent or slowly convergent directions for the Picard iteration
scheme is identified recursively. One basic assumption of RPM is that this
subspace is low-dimensional and well separated from the other modes. The
Picard iteration scheme is combined with a Newton iteration in the subspace
of divergent or slowly convergent modes. There is also a variant or RPM
which allows to perform continuation efficiently. RPM also returns stability
information for the Picard scheme. When RPM is used to compute steady-
states of large systems of ODEs, it can also return stability information
for those solutions under certain (rather restrictive) assumptions about the
Picard iteration scheme. They demonstrated their technique by accelerating
the convergence of time integration schemes for parabolic PDEs to a stable
or unstable steady-state.

The goal of this project was to try RPM as a convergence acceleration
technique for CFD codes. Before, RPM was mostly applied to parabolic
problems. The hyperbolic nature of the problems results in differences in
the spectrum of typical Picard iteration schemes. I created a set of Matlab
scripts implementing various variants of RPM and other related methods and
constructed an interface between Matlab and a simple code for the study of
acoustic instabilities. This was then used to study the differences with RPM
applied to parabolic systems. We made the following observations:




e The eigenvalues are typically not well separated in modulus. This slows
down the isolation of the divergent or weakly convergent directions and
causes unacceptably slow convergence of subspace iterations. Subspace
iterations are used in RPM to adapt the basis from a different point
for a new point. Arnoldi would probably do a better job: the more
dominant eigenvalues are well separated in the complex plane.

e RPM isolates information about the divergent or slowly convergent
directions by monitoring the convergence and by postprocessing the
updates in subsequent steps. However, this procedure only works well
when the iteration is linear (or almost linear). This is not the case when
the starting value is far away from the equilibrium point. The RPM
acceleration will only kick in when the iteration scheme has already
sufficiently converged. This is a problem in CFD: often, only very bad
starting values are available, and one is not always interested in very
accurate solutions of the discretized system. Hence, there is only a
small fraction of the total iteration count which is really accelerated by
RPM.

e Computing an unstable equilibrium without a good starting basis is
impossible: the iteration diverges and never stays long enough in the
near-linear domain around the solution to construct the basis. On the
other hand, starting with the final basis of another point on a branch
of equilibria is very expensive since the subspace iterations converge
very slowly. Hence better basis computation techniques are needed.

o The computed eigenvalues of the iteration scheme are not very accurate
(partly because they are not computed at the equilibrium point itself).
Spurious eigenvalues do sometimes occur. To obtain reliable stability
information for the Picard scheme, postprocessing is necessary.

e RPM is not very interesting to study the stability of steady-state so-
lutions in CFD codes. There is no easy (and invertible) relationship
between the eigenvalues of the right-hand side of the discretized PDE
and the eigenvalues of the iteration schemes typically used to converge
to steady-states. Schemes which are suited for stability analysis cost
a lot more than the steady state schemes, and even after acceleration
with RPM, they will still be a lot slower.
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Using a damped Newton method and accelerating the solution of the lin-
earized system with RPM would be more robust. This is also the strategy
used by Keller in later work [3]. However, the problems caused by the eigen-
value spectrum remain. Better eigenvalue computation techniques are also
needed. A combination with GMRES, where RPM is used as a preconditioner
for GMRES, also seems worth trying.

5 Honors/Awards

John Guckenheimer was Past president of SIAM in 1999. He was the Charles
Amick Lecturer at the University of Chicago in 1999. He was also a plenary
speaker at Equadiff 99, Berlin, giving the keynote lecture at the beginning of
the meeting. In 2000, he will join the Review Committee for the Theoretical
Division of Los Alamos National Laboratory, be a Frontiers Lecturer at Texas
A&M and an Erskine Fellow at Canterbury University in New Zealand.
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